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Abstract

Identifying dynamic forces from structural responses is necessary when direct measurement of those
dynamic forces is impossible using conventional means. A common approach to address this problem is to
determine the frequency response function (FRF) matrix, measure the structural responses, and calculate
the dynamic forces based on least-squares (LS) scheme. This approach has been proven to be effective in
reducing the random errors that occur in structural response signals. Unfortunately, the accuracy of
this approach is often hindered by the inversion of an ill-conditioned FRF matrix at frequencies near the
structural resonances. To overcome this inversion instability, two regularization filters, namely the
truncated singular value decomposition (TSVD) filter and the Tikhonov filter, are used in conjunction with
the conventional LS scheme at specific frequencies. Here a criterion for applying these enhanced LS
schemes is proposed to aid in determining when the increase in computational effort is better utilized.
Furthermore, a new LS form of the Morozov’s discrepancy principle is formulated to aid in selecting the
optimum regularization parameter for these filters at each frequency. The accuracy in using conventional
LS, TSVD-based LS, and Tikhonov filter-based LS schemes are compared analytically and numerically in
this paper. It is found that for small-sized FRF matrices, the Tikhonov filter-based LS scheme tends to
work better than the TSVD filter-based LS scheme. Since these approaches can only deal with the random
errors in the measured structural responses, a total least-squares (TLS) scheme that can also address errors
associated with the FRF matrix is proposed in this research. Numerical simulations demonstrate that under
certain conditions, the TLS scheme is more effective in reducing the impact of these errors.
r 2004 Elsevier Ltd. All rights reserved.
see front matter r 2004 Elsevier Ltd. All rights reserved.
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Nomenclature

y structural response
x coordinate specifying a point of the

structure
x0 coordinate specifying a point of the

structure
t time
t dummy variable
A FRF matrix
o angular velocity
f exciting force
m number of measurement locations
n number of identified forces
Z error
U left unitary matrix of singular-value

decomposition
V right unitary matrix of singular-

value decomposition
R singular-value matrix
s singular value
W a filter function
� error norm
k 2-norm condition number
DA perturbation matrix
Dy perturbation response

k regularization parameter for trun-
cated TLS scheme

a regularization parameter for LS
scheme

f tls TLS solution
F1 dynamic force one
F2 dynamic force two
Dyi amplitude Gaussian noise
Dj phase Gaussian noise
xt discrepancy

Superscripts

H Hermitian transpose
+ pseudo-inverse
�1 inverse
t time
noisy noise
identified identified value
exact exact value

Subscripts

pol polluted value
exact exact value
a regularization parameter
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1. Introduction

Accurate identification of dynamic forces can be very important to the structural design
process. Unfortunately, in some cases it is impossible to insert force gauges into the force transfer
path to measure those dynamic forces directly. Therefore, indirectly inferring these dynamic forces
by using measured structural motion responses in some sort of inverse model is sometimes
necessary. Among the conventional force identification methods, the frequency response function
(FRF)-based least-squares approach [1] is the most widely used because it can be applied to a
variety of force identification problems. The basic premise of the FRF approach is based on
spectral analysis. Given the measured vibrational response at one or more locations and the
frequency-domain FRF matrix, one can back-calculate the dynamic excitation forces at each
specific frequency by pre-multiplying the measured response vector by the pseudo-inverse of the
FRF matrix at that frequency. The pseudo-inverse technique is also known as a least-squares
method. An inverse Fourier transform on these computed values provides a time history of the
dynamic forces, which is of great interest in many cases such as impact force identification.
Note that depending on the number of measured response points and other important para-
meters, this technique can be used to find a single force or a set of forces acting on the structure.
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The least-squares approach does have important limitations, however. Some of the applications
and limitations of this approach are discussed next. Then existing methods for overcoming some
of these limitations are reviewed.
In, 1979, Bartlett [2] applied the least-square scheme to determine vibratory vertical and lateral

hub forces in an experimental helicopter model. Fourteen accelerometers were installed on a 5-
foot-long helicopter to indirectly determine these forces. The reasonableness of the forces
identified in that effort testifies to the success of the method. N. Okubo also successfully identified
dynamic forces by applying this approach on various structures [3]. Unfortunately, in spite of
some successful applications, the accuracy of this approach can still be hindered by the direct
inversion of an ill-conditioned FRF matrix at frequencies near the structural resonances.
Fabunmi [4,5] provided some insight on the causes of the inversion difficulties near resonant
frequencies by investigating the structural modes participating in the FRF matrix. He found that
at a given frequency the number of orthogonal modes, both rigid and elastic, that participate
significantly in the FRF matrix has a direct relationship with the condition of the FRF matrix.
Because only one mode dominates the FRF matrix near resonances for a lightly damped
structure, the FRF matrix tends to be ill-conditioned and the LS scheme is most likely to fail at
these frequencies. The pseudo-inverse of an ill-conditioned matrix can be numerically unsolvable
or numerically unstable with regard to error in the responses [6]. Although this ill-conditioning
can be a major problem, there are techniques that have been developed for addressing this issue. If
the inversion is numerically unstable, one is still able to achieve computational stability by
introducing regularization filters into the LS scheme. These filters, which are described using a
regularization parameter, increase inverse stability by adding constraints to the solution [7]. Two
of these approaches will be described next in more detail.
In the area of mathematics, the truncated singular value decomposition (TSVD) and the

Tikhonov filter have been developed to increase inverse stability. In effect, the TSVD technique
can be described as a filter that helps overcome the instability by filtering out the smallest singular
values of the matrix. In contrast, the Tikhonov filter tends to improve the inverse instability by
modifying the singular values through a regularization parameter [7]. In a recent study, Thite [8,9]
used different methods to increase inverse stability for a transfer path analysis problem. Through
numerical studies, he found that the Tikhonov filter works better than the TSVD filter in
identifying coherent dynamic forces. However, no explanation was given why the Tikhonov filter
is superior to the TSVD filter. Additionally, no specific criterion for applying these filters-based
LS schemes is suggested, hence making it quite inefficient to apply these complicated filters at each
specific frequency. It is worth noting that in Thite’s work, the FRF matrix used in both the
numerical and experimental studies was polluted. The analytical matrix was polluted by modal
truncation errors while the experimental matrix was polluted with measurement errors. However,
if these errors are negligible compared with the exact FRF matrix or the errors in structural
responses are dominant, the computed FRF matrix can be assumed as ‘exact’ and the TSVD and
Tikhonov filter provides improved results in these cases [8]. It is also known that the FRF matrix
is likely to be polluted by relatively large modeling or measurement errors when the structure is
not well quantified. These errors tend to result in large inversion errors near resonances [5].
Unfortunately, no satisfactory algorithm has been proposed to deal with this problem.
A major focus of the work presented here is to provide an effective and efficient algorithm for

force identification problems. First, a criterion of applying these enhanced LS schemes, namely
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the TSVD and the Tikhonov filter-based LS schemes, is developed. Then the Tikhonov filter is
reformulated in a form that tends to give a clear comparison with the TSVD filter approach. It has
been shown that the discrepancy principle has a more desirable convergence rate than any other
parameter choice law used in previous studies [7–9]. Hence, in order to achieve a better
regularization result, a new LS form of Morozov’s discrepancy principle is developed in this work
to determine the optimum regularization parameters. Theoretical and numerical studies are used
to show that the Tikhonov filter can achieve better results than the TSVD filter when the size of
FRF matrix is small. Another objective of this paper is to examine the possibility of applying a
total least square (TLS) scheme to reduce the measurement errors in both the FRF matrix and the
structural responses. The numerical study reveals that under certain conditions, the TLS scheme is
more effective than the LS scheme.
The following section provides an overview of the conventional LS scheme for force

identification problems. Although details associated with this dynamic force identification method
can be found in another work [10], a brief overview of the technique is provided here for
completeness. Along with this discussion, some of the limitations of this technique are again
noted and the methods mentioned above for overcoming these limitations are discussed in
more detail.
2. Force identification based on Least-square scheme

The translational response yðx; tÞ at a discrete point x on a structure is related to the
input or excitation force f ðx0; tÞ; located at x0; by the Green’s function Aðx x0;j tÞ in integral
form as [1]

yðx; tÞ ¼

Z t

0

Aðx x0;j t � tÞ f ðx0; tÞdt: (1)

Applying the Fourier transform to both sides of Eq. (1) and rearranging, the deconvolution
formulation in the frequency domain is obtained as

~yðx;oÞ ¼ ~Aðx x0;j oÞ � ~f ðx0; oÞ; (2)

where ~f ; ~y; and ~A are complex functions of the harmonic frequency o:
In general, Eq. (2) can be expressed in matrix form if multiple responses are measured at

different locations using the relationship

~yðoÞm�1 ¼
~AðoÞm�n �

~fðoÞn�1; (3)

where m refers to the number of the measurement locations, and n is the number of forces to be
identified. ~AðoÞ is the FRF matrix with ~AijðoÞ being the frequency response function between the
measured response at xi and the force located at location xj. If ~yðoÞ and ~AðoÞ are known and
m=n, Eq. (3) can be pre-multiplied by ~A

�1
ðoÞ to indirectly compute the desired force ~fðoÞ:

To reduce the impact of any errors in the measured response signals, it is generally better to use
a least-squares (LS) scheme with m4n when back-calculating the input forces. The LS scheme
provides some redundancy by utilizing response measurements taken at extra locations in order to
reduce the measured error and thereby improve the accuracy of the identified forces. The resulting
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formulation is

~f ¼ ~A
þ
~y; (4)

where the shortened notations ~f ¼ ~fðoÞ; ~A ¼ ~AðoÞ; and ~y ¼ ~yðoÞ are adopted for simplicity. ~A
þ

refers to the pseudo-inverse of the non-square matrix ~A; which is defined by [1]

~A
þ
¼ ð ~A

H ~AÞ�1 ~A
H
; (5)

where the superscript H refers to the Hermitian transpose.
Once the measured structural responses and the FRF matrix are obtained, the dynamic forces

can be computed from Eq. (4). However, the success of this formulation largely depends upon the
accuracy of the matrix inversion process. If the matrix ~A is ill-conditioned, the error in the
structural responses ~y will actually be amplified and the overall accuracy of the identified forces
will be reduced dramatically. In some cases, this ill-conditioning yields a relationship that is
unsolvable [6].
One possible way to address this error amplification problem in the LS scheme is to implement

a regularization method. This regularization can be accomplished if a numerical solution to
Eq. (3) exists. The idea of a TSVD filter to provide such a regularization has been employed in the
force identification technique for a long time [11]. However, this filter is not an ideal solution for
force identification problems since a lot of useful dynamic information tends to be filtered out by
the TSVD method. In contrast, another regularization method, the Tikhonov filter, is able to
retain more dynamic information than the TSVD filter especially when the size of FRF matrix is
small. This difference has not been explicitly stated in any previous literature and hence it is
difficult to select an optimum filter for each application. In the following section, the Tikhonov
filter is given in an alternative form that tends to provide a more in-depth understanding of the
differences between the TSVD filter and the Tikhonov filter methods. In addition, since the
inverse singularity issues described above do not occur at each frequency, a criterion for applying
these enhanced LS schemes is proposed. The suggestion of such a criterion has not been addressed
before now.
3. TSVD, Tikhonov filter-based LS schemes, and application criterion

Consider some vector ~g that describes the error in the measurement of the structural responses

~ypol ¼ ~A~fexact þ ~g; (6)

where ~fexact refers to exact dynamic forces (i.e. the actual excitation force), and ~ypol is the polluted
responses containing that error. Note here that the FRF matrix ~A is assumed to be polluted by
negligible modeling or measurement errors and can be assumed to be ‘exact’. According to the
theorem of singular value decomposition (SVD) [12], the FRF matrix ~A can be decomposed using
the factorization form

~A ¼ U � R � VH ; (7)

where U and V are unitary matrices (also called Hermitian orthogonal), VH is the adjoint matrix
of V, and R is a diagonal matrix whose elements are referred as the singular values of the matrix
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~A: For the current case, R has the form

R ¼
diagðs1; . . . ; snÞ

0½ 


" #
; (8)

where s1; s2 . . . ; sn are non-negative singular values arranged in descending order, and diag(�)
refers to a diagonal matrix with the elements in parentheses located on the main diagonal. Since
this measurement noise will also propagate into the computed forces, the polluted forces can be
found by replacing ~y in Eq. (4) with ~ypol and using Eqs. (6) and (7). The forces identified using the
polluted responses then have the form

~fpol ¼ ~fexact þ
Xn

i¼1

s�1i ðuH
i ZiÞvi; (9)

where ui refers to the column vector of U, Vi is the ith column vector of V, Zi is the ith element
of ~g; and si is the ith singular value of matrix ~A: If ~A is ill-conditioned, the ratio between the
largest and smallest singular values tends to be high and the division by the smallest singular
values sn; sn�1 . . . in Eq. (9) will amplify the measurement noise relative to the desired exact
forces. A result of this amplified error will be a predicted force, ~fpol; that is far from the desired
value ~fexact: One way to minimize the influence of noise amplification is to add a filter function
W aðs

2
i Þ for which W aðs

2
i Þs

�1
i approaches zero as si approaches zero [7]. To that end, the

formulation

~fa ¼ ~fexact þ
Xn

i¼1

W aðs
2
i Þs

�1
i ðuH

i ZiÞvi (10)

can be used, where the filter is defined as

W aðs
2
i Þ ¼

1; if s2i 4a;

0; if s2i oa;

(
(11)

and a refers to the regularization parameter, which is a constant. The notation ~fa is used to
represent the force computed from a regularized measured response that contains noise. This filter
is known as the truncated singular value decomposition (TSVD) filter. Hence the TSVD-based LS
scheme takes the final form

~fa ¼ ~fexact þ
X

i:s2
i
4a

s�1i ðuH
i ZiÞvi: (12)

Since W aðs
2Þ in Eq. (11) can only take on values of 0 or 1, the TSVD filter can be regarded as a

step function. Because of this discontinuous behavior, the TSVD filter may in fact filter out useful
structural dynamic information since it completely removes the smallest singular values, hence
reducing the accuracy of the inversion in Eq. (4). Another option for reducing the effects of errors
is the Tikhonov filter.
The Tikhonov filter is a continuous filter that has the form

W aðs
2Þ ¼

s2

s2 þ a
: (13)
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Based on this filter, the Tikhonov-based LS scheme formulation is

~fa ¼ ~fexact þ
Xn

i¼1

si

s2i þ a
ðuH

i ZiÞvi: (14)

In comparing Eq. (12) to Eq. (14), it is worth noting that the continuous property of the
Tikhonov-based LS scheme suppresses noise in the structural responses while retaining more
dynamic information than the TSVD-based LS scheme. As a result, the Tikhonov scheme has a
tendency to be more accurate. Of course, the effectiveness of each of these approaches depends on
the selection of the regularization parameter a:
The Morozov’s discrepancy principle can be used to choose a proper regularization parameter

if a priori estimation of the noise level in the measured structural responses is possible. This
principle has a more desirable convergence property than the methods used in the work of
Thite [8,9]. The difference between these principles is beyond the scope of this paper, and
therefore won’t be discussed in detail here. However, this difference is elaborated in Ref. [7].
According to this principle, the value selected for the regularization parameter a should be
such that the residue between the regularized and non-regularized solutions equals the estimated
noise norm � [7]:

~A~fa � ~ypol
�� �� � �; (15)

where

� ¼ g
�� ��

2
: (16)

In order to select the optimum regularization parameter for the enhanced LS schemes, a new
formulation of this discrepancy principle is developed here. The portion of the response vector ~ypol
associated with the null space of ~A; denoted by

Pm
i¼nþ1ðu

T
i ~ypolÞ

2; cannot be resolved by any LS
scheme. The discrepancy formulation of Eq. (15) can be reformulated for the TSVD-based LS
scheme as Xn

i¼k

ðuTi ~ypolÞ
2
� �2 �

Xm

i¼nþ1

ðuTi ~ypolÞ
2; (17)

where a now satisfies the inequality s2k4aXs2kþ1 and is used to truncate the series. It is worth
noting at this point that normally the size of the FRF matrix is small, since typically only a few
dynamic forces need to be identified. As a result, it is not necessary to obtain an extremely precise
value for a: One only needs to find the largest sk such that the inequalityXn

i¼k

ðuTi ~ypolÞ
2p�2 �

Xm

i¼nþ1

ðuTi ~ypolÞ
2 (18)

is satisfied. Then a can simply be selected for the range noted for Eq. (17).
The regularization parameter a for the Tikhonov-based LS scheme can be chosen in a similar

way such that it satisfies the approximate relationship

Xn

i¼1

1�
s2i

s2i þ a

� 	
ðuTi ~ypolÞ


 �2

� �2 �
Xm

i¼nþ1

ðuTi ~ypolÞ
2: (19)
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Depending on the method selected, one can apply Eq. (17) or Eq. (19) at each frequency to
determine the required regularization parameter. However, by doing this, the computational costs
tend to increase significantly because of these complicated filters and parameter selection
processes. Hence, it is useful to find a criterion for the threshold of applying these enhanced LS
schemes.
To address the issue of finding a threshold criterion, this research proposes using the second

norm condition number of the rectangular FRF matrix ~A: This norm, which has been found have
a direct relationship with the error amplification effect in the inverse process [13], is defined as the
ratio of the largest singular value to the smallest singular value

kð ~AÞ ¼
s1

sn

; (20)

where kð�Þ refers to matrix condition number. If ~A is ill-conditioned, then kð ~AÞ tends to be
large. Here it is proposed that if the value of kð ~AÞ at the frequency of interest is larger than a
threshold value of kth; which is pre-selected to be between 80 and 120, then an enhanced LS
scheme should be applied to overcome any inversion singularity. At the other frequencies,
where kð ~AÞ is less than the value of kth; the standard LS scheme is able to handle the force
identification problem. The selection of the specific value of kth depends upon the preference of
computational efficiency versus accuracy at each frequency. If kth is selected to be close to 80, then
the preference is for accuracy. On the other hand, if kth is selected close to 120, then the preference
is for computational efficiency. Although a specific single value for kth is not provided here,
this range can be of use when trying to determine whether or not the enhanced LS scheme
should be applied at a particular frequency. This criterion will be demonstrated in the numerical
example section below, where the excitation frequency of the identified force will be assumed
to be unknown. In those cases, either a conventional LS approach or an enhanced approach
will be applied to each frequency component in the time-domain signal, with the particular
approach depending on the value of the condition number at that frequency. The range of
threshold values specified above is based on the results of simulations conducted in this
research as well as observations made from a review of Thite’s work [8,9] and can be applied to
other cases.
Although the enhanced and conventional LS schemes are formulated to address errors

associated with measurement of the structural response. For many dynamic force identification
problems the FRF matrix ~A is not precisely known. For example, ~A may be polluted by
measurement or modeling errors. Hence, there is a need to use a robust method for reducing the
effects of errors in both the measured structural responses ~ypol and the FRF matrix ~A: One
possible method, the total least-squares (TLS) scheme, has not been previously used in the area of
force identification and is therefore discussed in the next section.
4. Total least-squares scheme

The TLS scheme is applied here to address the problem of errors present in both the FRF
matrix and the structural response. The TLS scheme finds a solution by perturbing both the FRF
matrix and the structural response vector with the minimum Frobenious norm of the augmented
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matrix D ~A;D~y
� 

; where D ~A is the perturbation of the FRF matrix and D~y is the perturbation of
structural responses. Although here it will be applied to the force identification case, the general
TLS methodology can be found in Ref. [14].
The augmented matrix ~Apol; ~ypol

h i
can be factorized by the SVD technique as

~Apol; ~ypol

h i
¼ Ū � R̄ � V̄

H
; (21)

where Ū and V̄ are unitary matrices. Similar to the approach used earlier, R̄ has the form

R̄ ¼
diag ðs̄1; . . . ; s̄nþ1Þ

0½ 


" #
; (22)

where s̄i is the ith singular value of the augmented matrix ~Apol; ~ypol

h i
: Here, the V̄ matrix can be

partitioned as

V̄ ¼

V̄11 V̄12

V̄21 V̄22

 !n

1

;

k n � k þ 1

(23a)

where k is the regularization parameter. Note that integer k is used to represent the TLS
regularization parameter while a is used for the LS scheme.
Then, the TLS solution ~ftls is computed as

~ftls ¼ �V̄12 V̄
þ

22; (23b)

where V̄
þ

22 refers to the pseudo-inverse of V̄22; as defined in Eq. (5). If the augmented matrix
½ ~Apol; ~ypol
 is ill-conditioned, which can be quantified by a large value of kð½ ~Apol; ~ypol
Þ as defined in
Eq. (20), a TLS regularization parameter k41 should be selected. Otherwise, choose k ¼ 1: Here,
it is worth noting that in the area of mathematics, if k41; the algorithm is also referred as a
truncated TLS scheme [14].
The choice of the regularization parameter is referred to as the stopping criterion in Ref. [14]

based on the theory that the regularization level should be such that the norm of the TLS residue
matrix equals the a priori known error

D ~A; D~y
�� ��

F
� �: (24)

Golub and Fierro studied the numerical differences between the TLS scheme and the LS scheme
in Refs. [15,16]. When expressing those results in terms of the force identification case, one can
conclude that under the condition that ~ypol is not highly incompatible with the column space of
~Apol; that is, ~ypol can be approximated using linear combination of column vectors of ~Apol; and the
response is oriented along the vectors corresponding with the smallest singular values of ~Apol; the
TLS scheme works much better than the LS schemes. It is worth noting that these results are
restricted to numerically solvable problems.
It is also worth noting that the TLS scheme is sensitive to the magnitude of the input forces.

This is evident when one considers that the TLS scheme is trying to get the minimum Frobenius-
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norm of the augmented matrix D ~A; D~y
� 

; in which D~y has a direct relationship with the magnitude
of these forces. Hence, if the amplitude of the force, for example, increases by a factor of 1000,
then the TLS scheme is more likely to reduce the effect of errors in the structural response.
Otherwise, if the force amplitudes are small, the TLS scheme is more likely to reduce the effect of
errors in the FRF matrix. One could, of course, use the approach presented by Golub [15] in
which the augmented matrix is pre- and post-multiplied by appropriately selected diagonal
weighting matrices. Unfortunately, searching for the optimal weighting matrices at each
frequency for a broad-band force identification problem can be extremely computationally
expensive. One approximate solution might be to select the weighting matrices such that the
singular value of the weighted response is comparable to the singular values of the weighted FRF
matrix. However, further research on this approach is needed to validate its applicability and
accuracy. As a result, issues related to the magnitudes of the input forces are not addressed here
and will the subject of future research.
Although the methods for improving force reconstruction described earlier are applied

here to address some issues that commonly arise in force identification problems, it is beneficial
to examine their efficiency through some numerical examples. In the numerical examples
described below, two example cases at different frequencies, each containing two forces,
are examined with the conventional LS approach. Then, the structural responses are perturbed
by random errors and the enhanced LS schemes described in Section 3 are used to identify
the dynamic forces. The results computed from the enhanced LS schemes are compared with
those from the conventional LS scheme described in Section 2. Finally, both the FRF matrix
and the structural responses are perturbed by random errors and the TLS scheme developed
in Section 4 is used to identify the dynamic forces. In order to evaluate the effectiveness of the
TLS scheme, the identified results are compared with those of the conventional and enhanced
LS scheme.
5. Numerical applications

In the following numerical examples, two sinusoidal forces acting on a free–free beam
will be identified by using the force identification techniques described above. The excitation
points are selected to be near the end of the beam as shown in Fig. 1. The free–free beam is
made of steel with an overall dimension of 50� 50� 1000mm3; where the last dimension is the
length. The material properties of the beam are listed in Table 1. By simulating the response of the
beam using a finite element (FE) method, the responses of the beam at five locations are
computed. These computed responses are used as virtual accelerometer measurements, numbered
1 through 5, which will serve for the purposes of measured responses in these examples. More
details regarding these ‘virtual measurements’ is provided later. The measurement locations
are selected to span the first and the second flexural modes to improve the quality of the
identified results.
Consider the two different excitation cases denoted by Case A, where F1ðtÞ ¼ sinð200ptÞ

and F2ðtÞ ¼ �2� F1ðtÞ; and Case B, where F1ðtÞ ¼ sinð520ptÞ and F2ðtÞ ¼ �2� F1ðtÞ:
The difference in these two cases is that in Case A the forcing frequency of 100Hz is not

near any natural frequency of the beam, whereas in Case B the excitation frequency of



ARTICLE IN PRESS

beam

F2 F1
Accelerometer

1 5 2 4 

1 m

0.05m

0.05m

3

Fig. 1. Schematic of a free–free beam system used in force identification. Two forces F1 and F2 and five virtual

accelerometers located on the beam.

Table 1

The material properties, natural frequencies and damping ratio of the free–free beam

Young’s modulus (GPa) 206.8

Density (kg/m3) 7820

Poison’s ratio 0.29

Computed natural frequencies (Hz) First mode 261.4

Second mode 708.1

Modal damping ratio First mode 1%

Second mode 1%

Y. Liu, W.S. Shepard Jr. / Journal of Sound and Vibration 282 (2005) 37–60 47
260Hz is near the first natural frequency of the beam, which is approximately 261Hz.Note that
these excitation configurations impose a net force as well as a net moment near the end of
the beam.
As noted above, the structural responses for each of these cases were obtained using a FE

method. One might use analytic methods to obtain these responses for such a simple structure.
The application of these analytical methods on complicated structures, which are common in
most practical engineering problems, is often impossible. Hence the FE method is preferred in this
paper since it is often used as a correlation method in real practice. Furthermore, the FE method
is not exact. For the cases studied, the beam was meshed using 400 eight-node solid elements so
that two rigid body modes and two flexural modes could be computed. A modal summation
method was used to obtain the FRF matrix in the frequency domain and the structural response
in the time domain. Then, to produce the virtual experimental data from these computed results,
the response was sampled at a frequency of 8192Hz, and a simulated 1 s sample duration of
‘measurement’ data was obtained. In the force identification process, of course, the excitation
frequency of the force is not initially known. Then, the force identification approach was applied
in some of the cases described below, where a measurement error was also introduced in the
response data.
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5.1. Least-squares solutions

First, the conventional LS scheme was used to identify the dynamic forces with the clean FE
results used as the measured responses. The results of the identified dynamic force F1 for Cases A
and B are shown in Figs. 2 and 3, respectively. For both the cases shown, the time histories of the
identified forces F1 match the actual dynamic forces quite well. However, further examination of
the identified force in the frequency domain reveals that the peak of F1 in both cases deviates
slightly from the exact solution that should be around 4000N/Hz. The peak of the identified force
is less than the exact solution and the dynamic energy smears over adjacent frequencies, as shown
in the frequency-domain plots. These deviations are due to the fact that: (1) a rectangular window
was used to obtain the time-domain responses, which might cause signal leakage and deviation in
the frequency domain, and (2) numerical errors associated with data processing, and (3) the FFT
is used, which is not always as accurate as the continuous FT. Furthermore, since the structural
response tends to be very large near resonances, it is not surprising that the smearing effect for
Case B is more pronounced than for Case A. Although not shown, the identified force F2 also
matches the exact solution in the time domain for both cases and in the frequency domain the
amplitude deviates from the exact solution in a similar way as F1: These figures demonstrate that
the conventional LS scheme is able to identify the dynamic forces correctly even when small
modeling errors, which could be taken as very small measurement errors, are present in the
structural responses. Furthermore, the success of the LS scheme also validates that this problem
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scheme in the (c) frequency and (d) time domains.



ARTICLE IN PRESS

0 500 1000
0

1000

2000

3000

4000

Frequency (Hz)

F
1 

(N
/H

z)

0 0.01 0.02

-1

-0.5

0

0.5

1

Time (seconds)

0 500 1000
0

1000

2000

3000

4000

Frequency (Hz)
0 0.01 0.02

-1

-0.5

0

0.5

1

Time (seconds)

(a) (b)

(c) (d)

F
1 

(N
/H

z)

F
1 

(N
)

F
1 

(N
)

Fig. 3. Case B. Comparison of exact F1 in the (a) frequency and (b) time domains to F1 identified with the LS scheme in

the (c) frequency and (d) time domains.

Y. Liu, W.S. Shepard Jr. / Journal of Sound and Vibration 282 (2005) 37–60 49
is numerically solvable. Analysis of the smallest singular values of the FRF matrix, as shown in
Fig. 4, indicates that the values are much larger than computer precision ð2:22� 10�16Þ:Hence for
the cases considered in this paper, the force identification problem is numerically solvable for all
the frequencies. At this point, it is interesting to note that if the number of dynamic forces is
increased or any rigid body mode are missing from the measured response, of a constrained beam
for example, the condition of the FRF matrix might be very ill-conditioned near any resonances.
For these cases, the smallest singular value tends to be below the computer precision, making the
force identification process near resonances impossible [17].
In both the cases considered, the errors in the FE method are pretty small compared with real

experiments. To examine the effect of random response noise on the accuracy of identified forces
for both Cases A and B, an amplitude Gaussian noise matrix Dy and a phase Gaussian noise
matrix Dj were introduced into the amplitudes and phases of the measured structural responses,
respectively, as

y
noisy
i ¼ yi � Dyi � e

jDj: (25)

In this equation, yi refers to the numerical measurement of the ith simulated accelerometer. Dyi is
the Gaussian noise with a mean equal to unity and a standard deviation equal to 0.05. Also Dj
has a mean of zero and a standard deviation equal to 0.09 rad (51).
The conventional LS scheme was applied with the errors described above and the identified

forces are compared with the exact forces for Cases A and B in Figs. 5 and 6, respectively. In order
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to quantify the errors between the exact solution and the identified solution, the discrepancy xt

[11] is found using the relationship

xt ¼

P
i

f identifiedðtiÞ � f exactðtiÞ
�� ��

P
i

f exactðtiÞ
�� �� � 100%; (26)

where f identifiedðtiÞ and f exactðtiÞ refer to the identified and exact forces at time ti; respectively. For
Case A in Fig. 5, in both the time domain and the frequency domain, the dynamic forces
computed from the LS scheme match the exact forces quite well. For Case B in Fig. 6, the
structural measurement errors are significantly amplified by the LS scheme. In the frequency
domain, the amplitude peak of the identified force F1 is more than 5 times the exact force, whereas
the amplitude peak of the identified force F2 is more than 4 times the exact force. These spurious
peaks in the frequency domain result in unacceptable identified forces, as demonstrated in the
time-domain plots of Fig. 6. Further examination of xt in Table 2 shows that for the polluted
responses, in Case A, xt for F1 is 0.4 and for F2 is 0.3, whereas in Case B, xt for F1 is 4.51 and xt for
F2 is 3.57. It is worth noting that in both cases, the random errors in the responses are amplified
near the resonances. However, since the input error level is defined to be proportional to the
amplitude of the responses, which is quite reasonable in real applications, the error levels for
Cases A and B are quite different. In Case A, the structural response energy is concentrated at
100Hz, where the FRF matrix tends to be well-conditioned. In contrast, for Case B, the structural
responses energy is concentrated at 260Hz, where the FRF matrix tends to be ill-conditioned.
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Therefore, one would expect for Case B that the measurement error tends to be much larger than
for Case A and that these errors are significantly amplified in the inverse process, thus making the
LS scheme inadequate. In order to clearly illustrate the effect of regularization methods described
above, these methods are only applied to Case B.
The quantification of the effect of error amplification at each frequency can be described by the

matrix condition number kð ~AÞ given in Eq. (20). In Fig. 7, kð ~AÞ is shown over the frequency range
of 0–1025Hz.The largest increases in kð ~AÞ; corresponding to the potential for error amplification,
are observed when the frequency is located in the vicinity of the resonances. Here, the criterion
proposed in the Section 4 is applied and a preference is placed on computational efficiency. As a
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result, a threshold value of 85 is selected for kth: Since the excitation frequency is assumed to be
unknown, the identification method is applied to all of the frequency components present in the
time-domain data. For those components at which the condition number of the FRF matrix
exceeds kth; a regularization scheme is applied to reduce the effect of response errors. For all of the
other frequency components, where the condition number is below this threshold, the
conventional LS approach is used.



ARTICLE IN PRESS

0 100 200 300 400 500 600 700 800 900 1000
0

50

100

150

200

250

300

350

Frequency (Hz)

� 
(A

)

Threshold 

Fig. 7. Condition number kðAÞ as a function of frequency.

Table 2

Comparison of discrepancy xt of LS, TSVD-based LS, and Tikhonov-based LS (duration=1 s)

Case LS TSVD Tikhonov

A From original

responses

From polluted

responses

From polluted

responses

From polluted

responses

Force F1 0.004 0.4

Force F2 0.004 0.3

B

Force F1 0.06 4.51 1.26 0.48

Force F2 0.04 3.57 1.00 0.37
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5.2. TSVD and Tikhonov filter solutions

To investigate the effects of regularizing the error amplification effect in Case B, the TSVD-
based LS scheme was applied at the frequencies where the above criterion is satisfied. A further
check of the regularization parameters, such that ðuT2 ~ypolÞ

2p�2 �
P5

i¼3ðu
T
i ~ypolÞ

2 is satisfied, ensures
that the solution is not over-regularized. The forces identified from the responses containing the
errors described above are shown in Fig. 8 for this approach. Compared with the results in Fig. 6,
the accuracy of the results from TSVD-based LS scheme is considerably improved over the
conventional LS scheme in both the frequency domain and the time domain. In the frequency
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domain, the spurious large peak near 260Hz for the conventional approach (Fig. 6) is regularized
to an acceptable level (Fig. 8). Note that for improved plotting resolution, the scales on the plot
are not the same. Study of the discrepancy xt; shown in Table 2, illustrates the effect of applying
the TSVD-based LS scheme. The discrepancies xt of and F2 are both reduced by over 70%.
However, the regularized amplitude peak is a little bit lower than the exact solution and in the
time domain the identified forces do not match the exact force well, which is due to the fact that
TSVD filter is a discrete filter that tends to nullify some important dynamic information. It can be
deduced that for the small-sized FRF matrix (in this case, the FRF matrix is 5� 2), the effect of
this missing information is more pronounced. Hence, the accuracy of this scheme is not
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satisfactory for the numerical example considered. As a result, it is useful to consider other
approaches for improving the results.
Next, a Tikhonov-based LS scheme is applied. The regularization parameters are computed by

Morozov’s discrepancy principle in Eq. (19). In order to find the optimum parameters, the
function DðaÞ is defined such that

DðaÞ ¼
Xm

i¼nþ1

ðuTi ~ypolÞ
2
þ
Xn

i¼1

1�
s2i

s2i þ a

� 	
ðuTi ~ypolÞ


 �2

� �2: (27)

In Fig. 9, DðaÞ is plotted as a function of the regularization parameter a at 260Hz.The optimum
regularization parameter corresponds to the zero of the curve DðaÞ: Table 3 lists the Tikhonov-
based scheme regularization parameters computed using the same approaches for other
frequencies near the first resonance. The identified forces using the Tikhonov-based LS scheme
are illustrated in Fig. 10. A significant accuracy improvement of the identified forces is observed
when compared with the results from the TSVD-based LS scheme of Fig. 8. This improvement in
accuracy is due to the fact that the Tikhonov filter is a continuous function that is able to retain
more useful dynamic information. The advantage of the Tikhonov-based LS scheme over the
TSVD-based LS scheme is illustrated in Table 2, where the discrepancy xt of F1 is reduced by an
additional 60% when using the Tikhonov scheme. The discrepancy xt of F2 is also reduced by an
additional 60%. Clearly the improvements are much more dramatic for this case.
The above computational results show that if both the TSVD and Tikhonov filters are applied

appropriately, the TSVD- and Tikhonov-based LS schemes are able to overcome the error
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Fig. 9. Regularization parameter selection function DðaÞ at 260Hz.
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Table 3

Regularization parameters for Tikhonov-based LS scheme (Case B)

Frequency (Hz) 255 256 257 258 259 260 261 262

Parameter value 3.02 6.2 0.012 26.4 34.2 0.017 49.8 0.085

Frequency (Hz) 263 264 265 266 267 268 269

Parameter value 0.017 25.4 0.013 6.6 10.8 11.8 6.77
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Fig. 10. Comparison of Tikhonov-based LS scheme identified and exact F1: (a) exact solution and (b) identified

solution in the frequency domain, (c) exact solution (—) and identified solution (- - -) in the time domain. Same for F2:
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in the time domain.
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amplification problems inherent in conventional LS schemes and thereby the dynamic forces are
identified more accurately. Unfortunately, an important limitation of these approaches is that
they are based on the LS scheme, which works under the implicit assumption that the FRF matrix
is not polluted. In some cases, FRF matrices are polluted by relatively large modeling
and experimental errors. To further investigate methods for increasing the accuracy of the
identified forces, the TLS scheme is applied to a case with both polluted responses and errors in
the FRF matrix.

5.3. TLS scheme solutions

In the following examples, both the structural responses and the FRF matrix are subject
to pollutions. The same level of errors is introduced into the structural responses as in the
previous simulations. Furthermore, a 3% multiplicative Gaussian noise and a 0.06 rad
added Gaussian noise are introduced into the FRF matrixes in order to simulate errors.
For Case A, a sample solution by means of the conventional LS and the TLS schemes are
compared with the exact solutions in Fig. 11. The solutions by both schemes match the
exact solution pretty well. Furthermore, it can be seen that in general, the TLS scheme does a
better job than the LS scheme. The discrepancy xt of TSVD scheme and TLS scheme were
computed to compare the identification deviations in the time domain. The discrepancy xt of force
F1 and force F2 are reduced from 0.60 to 0.52 and from 0.34 to 0.30, respectively, by using the
TLS scheme.
Finally, consider Case B with the same errors added into the system. A sample solution

by means of the LS and TLS schemes is compared with the exact solutions in Fig. 12.
The identification results by the LS scheme are not near as good as in Case A. This is due
to the fact that near resonances, the errors in both the FRF matrix and the responses may
produce large errors in the identified results [5]. In the figure, the forces identified with the
LS scheme cannot be distinguished clearly as sinusoidal forces, whereas the identified forces by
the TLS scheme matches the exact solution well. Consequently, the identified dynamic
forces computed by the TLS scheme are much improved. As before, the discrepancy xt by
LS and TLS schemes were computed to compare these results. The discrepancy xt of the
dynamic force F1 when switching from the LS scheme to the TLS scheme is reduced from
1.11 to 0.94, respectively, and the discrepancy xt of dynamic force F2 is reduced from 0.88 to
0.72. In the figure, the phase-shift phenomena are due to the fact that random phases of the
noise were amplified near resonance. Since some of this noise is intermingled with actual
dynamic information, the influence of noise cannot be completely discarded by the TLS
scheme.
The above simulations illustrate the fact that the TLS scheme works better than the LS scheme

when both the FRF matrix and responses are polluted by errors. This improvement is due to the
fact that the LS scheme is formulated under the assumptions that the FRF matrix is not polluted;
whereas, the TLS scheme is formulated to simultaneously address the errors in both the FRF
matrix and the responses. Further study of the numerical results shows that near resonances, the
errors in the FRF matrix cause the LS scheme to fail. This phenomenon was also noticed in
the work of Fabunmi [5]. Unfortunately, no solution was proposed in his work to address this
problem.
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6. Conclusion

In this work, various approaches were studied for force identification problems. To address the
numerical instability near resonances, existing approaches that use TSVD and Tikhonov filters in
the LS scheme were reviewed. Both regularization methods increase the accuracy of the LS
scheme provided the problem is numerically solvable. The primary difference is that the TSVD
filter is a discrete filter, whereas the Tikhonov filter is a continuous filter. Hence, the Tikhonov
filter retains more dynamic information than the TSVD filter. The numerical results showed the
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significant advantage of the Tikhonov filter over the TSVD filter when the size of FRF matrix is
small. This difference has not been noted by any previous article, thus making it quite difficult to
choose an optimum filter for the conventional LS scheme. Rather than using the parameter
selection principles described in some of previous works noted, a Morozov’s discrepancy
principle, which has a higher convergent rate than the other principles, was applied to select the
optimum regularization parameters. Since these regularization filters require additional
computation time, a criterion for applying the enhanced LS schemes was proposed in this work.



ARTICLE IN PRESS

Y. Liu, W.S. Shepard Jr. / Journal of Sound and Vibration 282 (2005) 37–6060
It was demonstrated that these complicated schemes are only necessary near the structural
resonances. Finally, since both the FRF matrix and response vector can be polluted by
measurement and modeling errors in real applications, a TLS scheme was developed here to
reduce the effects of these errors. The theoretical and numerical comparison between the LS
scheme and the TLS scheme showed that under certain conditions, the TLS scheme is able to give
a much better result when both the transfer function matrix and the response data contains errors.
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